翻訳と辞書 |
Four-vertex theorem : ウィキペディア英語版 | Four-vertex theorem
The classical four-vertex theorem states that the curvature function of a simple, closed, smooth plane curve has at least four local extrema (specifically, at least two local maxima and at least two local minima). The name of the theorem derives from the convention of calling an extreme point of the curvature function a vertex. This theorem has many generalizations, including a version for space curves where a vertex is defined as a point of vanishing torsion. ==Examples== An ellipse has exactly four vertices: two local maxima of curvature where it is crossed by the major axis of the ellipse, and two local minima of curvature where it is crossed by the minor axis. In a circle, every point is both a local maximum and a local minimum of curvature, so there are infinitely many vertices.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Four-vertex theorem」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|